Maryland Assessment Research Center (MARC)

Automated Difficulty Prediction of Large-Scale Assessments

Item Difficulty Modeling Using Fine-Tuned Small and Large Language Models


Abstract: This study investigates methods for item difficulty modeling in large-scale assessments using both small and large language models (LLMs). We introduce novel data augmentation strategies, including augmentation on the fly and distribution balancing, that surpass benchmark performances, demonstrating their effectiveness in mitigating data imbalance and improving model performance. Our results showed that fine-tuned small language models (SLMs) such as Bidirectional Encoder Representations from Transformers (BERT) and RoBERTa yielded lower root mean squared error than the first-place model in the BEA 2024 Shared Task competition, whereas domain-specific models like BioClinicalBERT and PubMedBERT did not provide significant improvements due to distributional gaps. Majority voting among SLMs enhanced prediction accuracy, reinforcing the benefits of ensemble learning. LLMs, such as GPT-4, exhibited strong generalization capabilities but struggled with item difficulty prediction, likely due to limited training data and the absence of explicit difficulty-related context. Chain-of-thought prompting and rationale generation approaches were explored but did not yield substantial improvements, suggesting that additional training data or more sophisticated reasoning techniques may be necessary. Embedding-based methods, particularly using NV-Embed-v2, showed promise but did not outperform our best augmentation strategies, indicating that capturing nuanced difficulty-related features remains a challenge.

Text-Based Approaches to Item Difficulty Modeling in Large-Scale Assessments: A Systematic Review


Abstract: Item difficulty plays a crucial role in test performance, interpretability of scores, and equity for all test-takers, especially in large-scale assessments. Traditional approaches to item difficulty modeling rely on field testing and classical test theory (CTT)-based item analysis or item response theory (IRT) calibration, which can be time-consuming and costly. To overcome these challenges, text-based approaches leveraging machine learning and language models, have emerged as promising alternatives. This paper reviews and synthesizes 37 articles on automated item difficulty prediction in large-scale assessment settings published through May 2025. For each study, we delineate the dataset, difficulty parameter, subject domain, item type, number of items, training and test data split, input, features, model, evaluation criteria, and model performance outcomes. Results showed that although classic machine learning models remain relevant due to their interpretability, state-of-the-art language models, using both small and large transformer-based architectures, can capture syntactic and semantic patterns without the need for manual feature engineering. Uniquely, model performance outcomes were summarized to serve as a benchmark for future research and overall, text-based methods have the potential to predict item difficulty with root mean square error (RMSE) as low as 0.165, Pearson correlation as high as 0.87, and accuracy as high as 0.806. The review concludes by discussing implications for practice and outlining future research directions for automated item difficulty modeling.